An Introduction to Hopf Algebra Gauge Theory

Derek K. Wise

(joint work with Catherine Meusburger)

Hopf Algebras in Kitaev’s Quantum Double Models

Perimeter Institute

31 July – 4 August 2017
Goal: Conservative generalization of (lattice) gauge theory from groups to Hopf algebras.
Hopf algebra gauge theory

Goal: Conservative generalization of (lattice) gauge theory from groups to Hopf algebras.

Why?

- Deep ideas for groups deserve Hopf algebra analogues! (Hopf algebras *are* groups . . . in Vect.)
Goal: Conservative generalization of (lattice) gauge theory from groups to Hopf algebras.

Why?

- Deep ideas for groups deserve Hopf algebra analogues! (Hopf algebras are groups . . . in Vect.)
- Gauge theoretic understanding of existing models, e.g.: Turaev–Viro as regularization of 3d quantum gravity, Combinatorial quantization of Chern-Simons theory, Other gauge-theory-like models with specific algebras, bases, lattices, etc.
Goal: Conservative generalization of (lattice) gauge theory from groups to Hopf algebras.

Why?

- Deep ideas for groups deserve Hopf algebra analogues! (Hopf algebras are groups ... in Vect.)
- Gauge theoretic understanding of existing models, e.g.: Turaev–Viro as regularization of 3d quantum gravity, Combinatorial quantization of Chern-Simons theory, Other gauge-theory-like models with specific algebras, bases, lattices, etc.
- Kitaev models. (See Catherine Meusburger’s talk, up next!)
Strategy

Take lattice gauge theory, and apply the monoidal functor

$$(\text{FinSet}, \times, 1) \to (\text{Vect}, \otimes, \mathbb{C})$$

to everything in sight.

<table>
<thead>
<tr>
<th>FinSet</th>
<th>Vect</th>
</tr>
</thead>
<tbody>
<tr>
<td>sets</td>
<td>vector spaces</td>
</tr>
<tr>
<td>or better:</td>
<td>or better:</td>
</tr>
<tr>
<td>coalgebras</td>
<td>coalgebras</td>
</tr>
<tr>
<td>groups</td>
<td>Hopf algebras</td>
</tr>
<tr>
<td>group actions</td>
<td>Hopf algebra modules</td>
</tr>
</tbody>
</table>

Then generalize to other fin. dim. Hopf algebras (conservatively!)
Result

Reproduce Hamiltonian quantum Chern-Simons theory.

• topological invariant: quantum moduli space
 (analog of the moduli space of flat (classical) connections)

• derived “axiomatically” by generalizing gauge theory, rather than quantizing Poisson structures.
A **Hopf algebra** is a bialgebra H with **antipode** $S: H \rightarrow H$, drawn as:

\[
\begin{array}{c}
\begin{array}{c}
\bullet
\end{array}
\end{array}
\]

Satisfying:
Graph with set V of vertices, set E of edges.
Lattice gauge theory

Graph with set \(V \) of vertices, set \(E \) of edges.

\[a_1, \ldots, a_7 \in G. \quad G^E \text{ is the set of connections} \]
Lattice gauge theory

Graph with set V of vertices, set E of edges.

$a_1, \ldots, a_7 \in G$. G^E is the set of connections
$g_1, \ldots, g_5 \in G$. G^V is the group of gauge transformations.
Lattice gauge theory

Graph with set V of vertices, set E of edges.

Graph:

$a_1, \ldots a_7 \in G$. G^E is the set of connections
$g_1, \ldots g_5 \in G$. G^V is the group of gauge transformations.

Action of G^V on G^E: e.g. $a_1 \mapsto g_2 a_1 g_3^{-1}$.
<table>
<thead>
<tr>
<th>Gauge theory for G</th>
<th>Gauge theory for $\mathbb{C}[G]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge group G</td>
<td>Gauge Hopf algebra $\mathbb{C}[G]$</td>
</tr>
<tr>
<td>Gauge trans.: $\mathcal{G} = G^V$</td>
<td>Gauge trans.: $\mathcal{G} = \mathbb{C}[G]^\otimes V$</td>
</tr>
<tr>
<td>Connections: $\mathcal{A} = G^E$</td>
<td>Connections: $\mathcal{A} = \mathbb{C}[G]^\otimes E$</td>
</tr>
<tr>
<td>Gauge action: $\triangleright: \mathcal{G} \times \mathcal{A} \rightarrow \mathcal{A}$</td>
<td>Gauge action: $\triangleright: \mathcal{G} \otimes \mathcal{A} \rightarrow \mathcal{A}$</td>
</tr>
<tr>
<td>Functions: $\mathcal{A}^* = { f : \mathcal{A} \rightarrow \mathbb{C} } \cong \mathbb{C}[G]^* \otimes E$</td>
<td>Functions: $\mathcal{A}^* = \mathbb{C}[G]^* \otimes E$</td>
</tr>
<tr>
<td>Observables: $\mathcal{A}_{inv}^* \subset \mathcal{A}^*$ with $f (g \triangleright a) = f (a)$</td>
<td>Observables: $\mathcal{A}_{inv}^* \subset \mathcal{A}^*$ with $f (g \triangleright a) = \epsilon (g) f (a)$</td>
</tr>
</tbody>
</table>

Goal: Generalize from $\mathbb{C}[G]$ to a finite-dimensional Hopf algebra H.

Hopf algebra gauge theory from group gauge theory

<table>
<thead>
<tr>
<th>Gauge theory for G</th>
<th>Gauge theory for $\mathbb{C}[G]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge group G</td>
<td>Gauge Hopf algebra $\mathbb{C}[G]$</td>
</tr>
<tr>
<td>Gauge trans.: $\mathcal{G} = G^V$</td>
<td>Gauge trans.: $\mathcal{G} = \mathbb{C}[G]^\otimes V$</td>
</tr>
<tr>
<td>Connections: $\mathcal{A} = G^E$</td>
<td>Connections: $\mathcal{A} = \mathbb{C}[G]^\otimes E$</td>
</tr>
<tr>
<td>Gauge action:</td>
<td>Gauge action:</td>
</tr>
<tr>
<td>$\triangleright: \mathcal{G} \times \mathcal{A} \to \mathcal{A}$</td>
<td>$\triangleright: \mathcal{G} \otimes \mathcal{A} \to \mathcal{A}$</td>
</tr>
</tbody>
</table>

Functions:

$\mathcal{A}^* = \{ f: \mathcal{A} \to \mathbb{C} \} \cong \mathbb{C}[G]^* \otimes E$

Observables:

$\mathcal{A}_{\text{inv}}^* \subset \mathcal{A}^*$ with

$f(g \triangleright a) = f(a)$

Observables:

$\mathcal{A}_{\text{inv}}^* \subset \mathcal{A}^*$ with

$f(g \triangleright a) = \epsilon(g)f(a)$

Goal: Generalize from $\mathbb{C}[G]$ to a finite-dimensional Hopf algebra H.
Gauge transformations

For a Hopf algebra H, the gauge action on connections should be

$$\triangleright : H \otimes V \otimes H \otimes E \to H \otimes E$$

To make this linear, we need H’s comultiplication:

$$\Delta : H \to H \otimes H$$

to “duplicate” vertex elements:

If H is not cocommutative, we need a total order at each vertex!
Gauge transformations

Otherwise, copy the gauge action as closely as possible:
Gauge transformations

Otherwise, copy the gauge action as closely as possible:

\[\cdots \otimes a \otimes \cdots \rightarrow \cdots \otimes g'_4 aS(g_1) \otimes \cdots \]
A graph with *cyclically ordered* edge-ends is a **ribbon graph**

\longrightarrow surface with boundary.

\longrightarrow closed surface, after sewing discs.

We’ve got a bit more... A graph with *totally ordered* edge-ends is a **ciliated ribbon graph**

End result is independent of ‘ciliation’ up to isomorphism, but the cyclic order matters

\longrightarrow Hopf algebra gauge theory is fundamentally 2-dimensional.
Hopf gauge theory

So far, we’ve got...

Groups

- Gauge group G
- Graph (V, E)
- Gauge trans.: $\mathcal{G} = G^V$
- Connections: $\mathcal{A} = G^E$
- Functions: $\mathcal{A}^* = \text{Fun}(G) = \mathbb{C}[G]^*$

<table>
<thead>
<tr>
<th>Hopf algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge Hopf algebra H</td>
</tr>
<tr>
<td>Ciliated ribbon graph (V, E)</td>
</tr>
<tr>
<td>Gauge trans.: $\mathcal{G} = H^\otimes V$</td>
</tr>
<tr>
<td>Connections: $\mathcal{A} = H^\otimes E$</td>
</tr>
<tr>
<td>Functions: $\mathcal{A}^* = H^* \otimes E$</td>
</tr>
</tbody>
</table>
Observables

<table>
<thead>
<tr>
<th>Groups</th>
<th>Hopf algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observables are functions</td>
<td>Observables are linear maps</td>
</tr>
<tr>
<td>(f : G^E \to \mathbb{C})</td>
<td>(f : H^\otimes E \to \mathbb{C})</td>
</tr>
<tr>
<td>that are gauge invariant:</td>
<td>that are gauge invariant:</td>
</tr>
<tr>
<td>(f(g \triangleright a) = f(a) \quad \forall g \in G^V)</td>
<td>(f(g \triangleright a) = \epsilon(g)f(a) \quad \forall g \in H^\otimes V)</td>
</tr>
<tr>
<td>Functions form an algebra in an obvious way: (\mathcal{A}^* \cong \text{Fun}(G^\otimes E))</td>
<td>Functions form an algebra in an ‘obvious’ way: (\mathcal{A}^* \cong H^* \otimes E)</td>
</tr>
<tr>
<td>Observables form a subalgebra.</td>
<td></td>
</tr>
</tbody>
</table>
Observables

Groups

Observables are functions

\[f : G^E \to \mathbb{C} \]

that are \textbf{gauge invariant}:

\[f(g \triangleright a) = f(a) \quad \forall g \in G^V \]

Functions form an \textit{algebra} in an obvious way: \(A^* \cong \text{Fun}(G)^E \)

Observables form a \textit{subalgebra}.

Hopf algebras

Observables are linear maps

\[f : H^\otimes E \to \mathbb{C} \]

that are \textbf{gauge invariant}:

\[f(g \triangleright a) = \epsilon(g)f(a) \quad \forall g \in H^{\otimes V} \]

Functions form an \textit{algebra} in an ‘obvious’ way: \(A^* \cong H^{*\otimes E} \)

Observables are \textbf{not} a subalgebra, unless \(H \) is cocommutative!
Observables

Groups

Observables are functions

\[f : G^E \to \mathbb{C} \]

that are gauge invariant:

\[f(g \triangleright a) = f(a) \quad \forall g \in G^V \]

Functions form an algebra in an obvious way: \(\mathcal{A}^* \cong \text{Fun}(G)^{\otimes E} \)

Observables form a subalgebra.

Hopf algebras

Observables are linear maps

\[f : H^{\otimes E} \to \mathbb{C} \]

that are gauge invariant:

\[f(g \triangleright a) = \epsilon(g)f(a) \quad \forall g \in H^{\otimes V} \]

New approach: generalize algebra structure on \(\mathcal{A}^* \cong H^{*\otimes E} \ldots \)

so that observables form a subalgebra.

But first, why doesn’t the obvious algebra structure work?
Module coalgebras

To get a gauge-invariant subalgebra $A_{\text{inv}}^* \subset A^*$, we need the action of G to preserve the algebra structure of A^* \iff preserve the coalgebra structure of A.

This means we need A to be a G-module coalgebra:

$$\Delta(h \triangleright a) = \Delta(h) \triangleright \Delta(a) \quad \epsilon(h \triangleright a) = \epsilon(h)\epsilon(a)$$

In the group case, this works automatically.

For Hopf algebras it does NOT work if we use the tensor product coalgebra structure on $A \cong H \otimes E$, unless H is cocommutative.

For example ...
Example: Gauge theory “on the edge”

Graph with one edge, two vertices:

\[
\begin{array}{c}
h' \quad b \quad h \\
\bullet & \text{—} & \bullet
\end{array}
\]

\[(h' \otimes h) \triangleright b = h'bS(h)\]

For a module coalgebra, we need:

\[
\Delta((h' \otimes h) \triangleright a) \overset{?}{=} \Delta(h' \otimes h) \triangleright \Delta(a)
\]

However, with the “obvious” coalgebra structure, we find

- LHS: \(h'_{(1)} a_{(1)} S(h_{(2)}) \otimes h'_{(2)} a_{(2)} S(h_{(1)}) \)
- RHS: \(h'_{(1)} a_{(1)} S(h_{(1)}) \otimes h'_{(2)} a_{(2)} S(h_{(2)}) \)

Fails because \(S \) is a coalgebra antihomomorphism:

\[
\Delta(S(h)) = S(h)_{(1)} \otimes S(h)_{(2)} = S(h_{(2)}) \otimes S(h_{(1)})
\]

But \(S \) is not the only problem ...
Example: Single vertex

Another example:

Edges all get acted on by gauge transformation at the vertex

But tensor product of module coalgebras is not generally a module coalgebra!

(More problems with ordering of factors in comultiplication...)
Need to relate Δ with Δ^{op}.

Suggests using a quasitriangular Hopf algebra, with R-matrix $R \in H \otimes H$.

$$\Delta^{\text{op}}(h) = R\Delta(h)R^{-1} \quad \forall h \in H$$

This helps. For example ...
Gauge theory “on the edge”

Gauge transformations: $\mathcal{G} = H \otimes H$ as a Hopf algebra.

Connections: $\mathcal{A} = H$ as a vector space.
\mathcal{G}-module structure:

\[
\begin{align*}
 h' & \quad b \quad h \\
\end{align*}
\]

\[(h' \otimes h) \triangleright b = h'bS(h)\]

Coalgebra structure: (H, δ, ϵ)

\[
\delta(a) = \Delta(a) R_{21}
\]

This gives a module coalgebra.

Functions: Dual of \mathcal{G}-module coalgebra structure on \mathcal{A}

\implies right \mathcal{G}-module algebra structure on \mathcal{A}^*

\implies observables are a subalgebra.
Example: Single vertex

Solution is related to Majid’s ‘braided tensor products’ of module (co)algebras …
Example: Single vertex

Solution is related to Majid’s ‘braided tensor products’ of module (co)algebras . . .

But how do we figure this out systematically?
Plan: Axioms for Gauge Theory

Decide on axioms! What should a Hopf algebra gauge theory be like?
Decide on axioms! What should a Hopf algebra gauge theory be like?

- Mimic the gauge action from the group case
Decide on axioms! What should a Hopf algebra gauge theory be like?

- Mimic the gauge action from the group case
- Give a comodule algebra of connections
 \[\Rightarrow \] module algebra of functions.
Decide on axioms! What should a Hopf algebra gauge theory be like?

• Mimic the gauge action from the group case
• Give a comodule algebra of connections
 \implies module algebra of functions.
• Have an algebra of functions that is “local”
Local algebra

Since $A^* \cong \bigotimes_E H^*$, we have embeddings for edges:

$$\iota_e : H^* \to A^* \quad \iota_e(\alpha) =: (\alpha)_e$$

and pairs of edges:

$$\iota_{ee'} : H^* \otimes H^* \to A^* \quad \iota_{ee'}(\alpha) =: (\alpha)_{ee'}$$

Say an algebra structure on $A^* \cong H^* \otimes E$ with unit $1 \otimes E$ is local if:

(i) each $\iota_e(H^*)$ is a subalgebra of A^*

(ii) each $\iota_{ee'}(H^* \otimes H^*)$ is a subalgebra of A^*

(iii) If $e, e' \in E$ have no common vertex:

$$\quad (\alpha)_e \cdot (\beta)_{e'} = (\beta)_{e'} \cdot (\alpha)_e = (\alpha \otimes \beta)_{ee'}$$

for all $\alpha, \beta \in H^*$
Hopf Algebra Gauge Theory

Γ = (V, E) a ciliated ribbon graph, H a Hopf algebra.

Gauge theory on Γ with values in H consists of:
1. The Hopf algebra \(\mathcal{G} = H \otimes V \).
2. The vector space \(\mathcal{A} = H \otimes E \), equipped with a coalgebra structure such that the dual algebra structure on \(\mathcal{A}^* \cong H^* \otimes E \) is local.
3. A left \(\mathcal{G} \) module structure \(\triangleright : \mathcal{G} \otimes \mathcal{A} \to \mathcal{A} \) on \(\mathcal{A} \) such that:
 (i) \(\triangleright \) makes \(\mathcal{A} \) into a \(\mathcal{G} \) module coalgebra,
 (ii) \(\triangleright \) acts “as expected” for gauge transformations on single edges. That is: if \(e \in E \) is not a loop, and \(v \in V \) is not an endpoint of \(e \):

\[
(h)_v \triangleright (a)_e = \epsilon(h)(a)_e \\
(h)_{t(e)} \triangleright (a)_e = (hk)_e \\
(h)_{s(e)} \triangleright (a)_e = (aS(h))_e.
\]
Example: Single vertex

(though of as a degenerate ‘graph’)

For H quasi-triangular, there’s an essentially unique algebra structure on A^* compatible with Hopf algebra gauge theory axioms:

$$(\alpha)_i \cdot (\beta)_j = (\alpha \otimes \beta)_{ij} \quad i < j$$

$$(\alpha)_i \cdot (\beta)_j = \langle \beta_{(1)} \otimes \alpha_{(1)}, R \rangle (\alpha_{(2)} \otimes \beta_{(2)})_{ij} \quad i > j.$$

and for $i = j$, we have two choices:

$$(\alpha)_i \cdot (\beta)_i = (\alpha \beta)_i \quad \text{“normal”}$$

$$(\alpha)_i \cdot (\beta)_i = \langle \beta_{(1)} \otimes \alpha_{(1)}, R \rangle (\beta_{(2)} \alpha_{(2)})_i \quad \text{“twisted”}$$

independently for each edge end. (Reversing arrows requires *semisimple*, or more generally, *ribbon* Hopf alg.)
Strategy: Dissect the graph! (Locality lets us do this)

For each edge, one half-edge is “normal”, and the other is “twisted”. Comultiplication in \(H^* \) gives an injective linear map

\[
G^* : \mathcal{A}^* \rightarrow \bigotimes_{v \in V} \mathcal{A}_v^*
\]

Theorem: The image of \(G^* \) is a subalgebra and a \(H^* \otimes V \)-submodule of \(\bigotimes_v \mathcal{A}_v^* \). Pulling back this structure makes \(\mathcal{A}^* := H^* \otimes E \) into the algebra of functions for a Hopf algebra gauge theory.
Results

• Hopf gauge theory determined by axioms: locality, module (co)algebra, and expected local gauge action.

• In any Hopf algebra gauge theory $A^*_{inv} \subset A^*$ is a subalgebra, the algebra of observables.

• Examples:
 • $\mathbb{C}[G] \implies$ Lattice gauge theory for G.
 • $D(H)$, single edge \implies Heisenberg double of H
 • $D(H)$, single looped edge \implies $D(H)$

• Algebra of functions coincides with the “lattice algebra” from combinatorial quantization of Chern-Simons theory. [Alekseev, Grosse, Schomerus 94], [Buffenoir, Roche 95]

• Topological invariant of the surface with boundary obtained from the ribbon graph.
If H is semisimple, then Hopf algebra gauge theory has a **holonomy functor**:

$$\text{Hol}: \mathcal{P} \rightarrow \text{hom}(H \otimes E, H)$$

\mathcal{P} is the **path groupoid** of the graph:

- objects: vertices
- morphisms: equivalence classes of edge-paths.

$\text{hom}(H \otimes E, H)$ is an **algebra** with multiplication

$$f \cdot g = m \circ (f \otimes g) \circ \Delta \otimes$$

Associative algebra \Leftrightarrow linear category with one object.
Curvature

- Holonomy around a face is **curvature**. A connection is flat if curvature at every face is 1.
- A Haar integral in H^* gives rise to a projector

$$P_{\text{flat}} : \mathcal{A}_{\text{inv}}^* \to \mathcal{A}_{\text{inv}}^*$$

Image of P_{flat} is the **quantum moduli space**
[Alekseev, Grosse, Schomerus ’94], [Buffenoir Roche ’95], [Meusburger, W]

- Topological invariant of the closed surface obtained from the ribbon graph. (Quantum analog of hom(π_1, G)/G).

Catherine’s talk, after the coffee break.